巽流体力学の行間埋め 第2章
2.流体の運動と力
- 式(2・5)の導出
- 式(2・9)の導出
- 式(2・11)の導出
- 式(2・13)の導出
- 式(2・23)の導出
- 式(2・28)の導出
- p.25中段の\(\omega_l\)の導出
- 式(2・35)の導出
- 式(2・35)の導出
- 式(2・50)の式変形の導出
\begin{align*}
\frac{D}{Dt}A(\boldsymbol{x}_0,t)
&=
\frac{\partial}{\partial t}A(\boldsymbol{x},t)+\frac{Dx_1(\boldsymbol{x},t)}{Dt}\frac{\partial}{\partial x_1}A(\boldsymbol{x},t)+\frac{Dx_2(\boldsymbol{x},t)}{Dt}\frac{\partial}{\partial x_2}A(\boldsymbol{x},t)+\frac{Dx_3(\boldsymbol{x},t)}{Dt}\frac{\partial}{\partial x_3}A(\boldsymbol{x},t) \\ \\
&=
\frac{\partial}{\partial t}A(\boldsymbol{x},t)+u_1\frac{\partial}{\partial x_1}A(\boldsymbol{x},t)+u_2\frac{\partial}{\partial x_2}A(\boldsymbol{x},t)+u_3\frac{\partial}{\partial x_3}A(\boldsymbol{x},t)&&...\text{p.15よりLagrange式記述では}\frac{D\boldsymbol{x}}{Dt}=\boldsymbol{u}\text{になる} \\ \\
&=
\frac{\partial}{\partial t}A(\boldsymbol{x},t)+u_i\frac{\partial}{\partial x_i}A(\boldsymbol{x},t)&&...\text{p.15下の縮約記法より} \\ \\
&=
\frac{\partial}{\partial t}A(\boldsymbol{x},t)+
\left(
\begin{array}{cccc}
u_1 \\
u_2 \\
u_3
\end{array}
\right)
\cdot
\left(
\begin{array}{cccc}
\frac{\partial}{\partial x_1}A(\boldsymbol{x},t) \\
\frac{\partial}{\partial x_2}A(\boldsymbol{x},t) \\
\frac{\partial}{\partial x_3}A(\boldsymbol{x},t)
\end{array}
\right) \\ \\
&=
\frac{\partial}{\partial t}A(\boldsymbol{x},t)+
\left(
\begin{array}{cccc}
u_1 \\
u_2 \\
u_3
\end{array}
\right)\cdot \text{grad} A(\boldsymbol{x},t) \\ \\
&=
\left\{\frac{\partial}{\partial t}+\boldsymbol{u}\cdot \text{grad}\right\} A(\boldsymbol{x},t) \\ \\
\end{align*}
と導出できる。
p.17下部より
\begin{align*}
\text{grad}(\boldsymbol{A}\cdot\boldsymbol{B})-\text{rot}(\boldsymbol{A}\times\boldsymbol{B})
&=
(\boldsymbol{A}\cdot\text{grad})\boldsymbol{B}+(\boldsymbol{B}\cdot\text{grad})\boldsymbol{A}+\boldsymbol{A}\times\text{rot}\boldsymbol{B}+\boldsymbol{B}\times\text{rot}\boldsymbol{A}
+(\boldsymbol{A}\cdot\text{grad})\boldsymbol{B}-(\boldsymbol{B}\cdot\text{grad})\boldsymbol{A}-\boldsymbol{A}\text{div}\boldsymbol{B}+\boldsymbol{B}\text{div}\boldsymbol{A} \\ \\
&=
2(\boldsymbol{A}\cdot\text{grad})\boldsymbol{B}+\boldsymbol{A}\times\text{rot}\boldsymbol{B}+\boldsymbol{B}\times\text{rot}\boldsymbol{A}
-\boldsymbol{A}\text{div}\boldsymbol{B}+\boldsymbol{B}\text{div}\boldsymbol{A} \\ \\
\Leftrightarrow
(\boldsymbol{A}\cdot\text{grad})\boldsymbol{B}&=\frac{1}{2}\left\{
\text{grad}(\boldsymbol{A}\cdot\boldsymbol{B})-\text{rot}(\boldsymbol{A}\times\boldsymbol{B})-\boldsymbol{A}\times\text{rot}\boldsymbol{B}-\boldsymbol{B}\times\text{rot}\boldsymbol{A}+\boldsymbol{A}\text{div}\boldsymbol{B}-\boldsymbol{B}\text{div}\boldsymbol{A}
\right\}
\end{align*}
と導出できる。これに対して\(\boldsymbol{A}=\boldsymbol{u},\boldsymbol{B}=\boldsymbol{A}\)と置換して式(2・7)に代入することで得られる。
式(2・9)に\(\boldsymbol{A}=\boldsymbol{u}\)を代入すると
\begin{align*}
\frac{D\boldsymbol{u}}{Dt}
&=
\frac{\partial \boldsymbol{u}}{\partial t}+\frac{1}{2}\left\{\text{grad}(\boldsymbol{u}\cdot\boldsymbol{u})+\text{rot}\boldsymbol{u}\times\boldsymbol{u}+\text{rot}\boldsymbol{u}\times\boldsymbol{u}-\text{rot}(\boldsymbol{u}\times\boldsymbol{u})+\boldsymbol{u}\text{div}\boldsymbol{u}-\boldsymbol{u}\text{div}\boldsymbol{u}\right\} \\ \\
&=
\frac{\partial \boldsymbol{u}}{\partial t}+\frac{1}{2}\left\{\text{grad}(\boldsymbol{u}\cdot\boldsymbol{u})-\text{rot}(\boldsymbol{u}\times\boldsymbol{u})+2\text{rot}\boldsymbol{u}\times\boldsymbol{u}\right\} \\ \\
&=
\frac{\partial \boldsymbol{u}}{\partial t}+\frac{1}{2}\left\{\text{grad}(\boldsymbol{u}\cdot\boldsymbol{u})+2\text{rot}\boldsymbol{u}\times\boldsymbol{u}\right\}&&...\boldsymbol{A}\times\boldsymbol{A}=0\text{となるから} \\ \\
&=
\frac{\partial \boldsymbol{u}}{\partial t}+\frac{1}{2}\left\{\text{grad}(u_1^2+u_2^2+u_3^2)+2\text{rot}\boldsymbol{u}\times\boldsymbol{u}\right\}& \\ \\
&=
\frac{\partial \boldsymbol{u}}{\partial t}+\frac{1}{2}\left\{\text{grad}|\boldsymbol{u}|^2+2\text{rot}\boldsymbol{u}\times\boldsymbol{u}\right\}& \\ \\
&=
\frac{\partial \boldsymbol{u}}{\partial t}+\text{grad}\left(\frac{1}{2}|\boldsymbol{u}|\right)^2+\text{rot}\boldsymbol{u}\times\boldsymbol{u}& \\ \\
&=
\frac{\partial \boldsymbol{u}}{\partial t}+\text{grad}\left(\frac{1}{2}|\boldsymbol{u}|\right)^2-\boldsymbol{u}\times\text{rot}\boldsymbol{u}&&...\boldsymbol{A}\times\boldsymbol{B}=-\boldsymbol{B}\times\boldsymbol{A}\text{だから} \\ \\
\end{align*}
と導出できる。
平行であることから定数\(k\)を用いて
\begin{align*}
d\boldsymbol{x}=k \boldsymbol{u}(\boldsymbol{x},t)
\end{align*}
と書くことができる。このとき各成分を比較すると
\begin{align*}
dx_i=k u_i(\boldsymbol{x},t) \\ \\
\Rightarrow
k=\frac{dx_i}{u_i(\boldsymbol{x},t)}
\end{align*}
となり、これはどの\(i\)に対しても成立するため式(2・13)が得られる。
\begin{align*}
\delta u_i
&=
u_i^{\prime}-u_i \\ \\
&=
u_i(\boldsymbol{x}+\delta\boldsymbol{x})-u_i(\boldsymbol{x})&&...\text{p.22中部より} \\ \\
&=
u_i(x_1+\delta x_1,x_2+\delta x_2,x_3+\delta x_3)-u_i(x_1,x_2,x_3)& \\ \\
&=
u_i(x_1,x_2,x_3)+\frac{\partial u_i}{\partial x_1}\delta x_1+\frac{\partial u_i}{\partial x_2}\delta x_2+\frac{\partial u_i}{\partial x_3}\delta x_3+\ldots-u_i(x_1,x_2,x_3)&&...\text{多変数関数のテイラー展開より} \\ \\
&=
\frac{\partial u_i}{\partial x_1}\delta x_1+\frac{\partial u_i}{\partial x_2}\delta x_2+\frac{\partial u_i}{\partial x_3}\delta x_3+\ldots&\\ \\
&\simeq
\frac{\partial u_i}{\partial x_j}\delta x_j&&...\text{p.15下の縮約の規約より}\\ \\
\end{align*}
式(2・24)の中で対称の部分を抜き出して計算する。
\begin{align*}
\delta u_1
&=
\frac{1}{2}\left(\frac{\partial u_1}{\partial x_j}+\frac{\partial u_j}{\partial x_1}\right)\delta x_j \\ \\
&=
\frac{1}{2}\left(\frac{\partial u_1}{\partial x_1}+\frac{\partial u_1}{\partial x_1}\right)\delta x_1+\frac{1}{2}\left(\frac{\partial u_1}{\partial x_2}+\frac{\partial u_2}{\partial x_1}\right)\delta x_2+\frac{1}{2}\left(\frac{\partial u_1}{\partial x_3}+\frac{\partial u_3}{\partial x_1}\right)\delta x_3&&...\text{p.15下の縮約の規約より} \\ \\
&=
\frac{1}{2}\left(e_{11}+e_{11}\right)\delta x_1+\frac{1}{2}\left(e_{12}+e_{21}\right)\delta x_2+\frac{1}{2}\left(e_{13}+e_{31}\right)\delta x_3&\\ \\
&=
\frac{1}{2}\left(e_{12}+e_{21}\right)\delta x_2&&...e_{12}=e_{21}\text{以外で値を持たないため}\\ \\
&=
e_{12}\delta x_2&&...e_{21}=e_{12}\\ \\
\end{align*}
と導出できる。また、
\begin{align*}
\delta u_2
&=
\frac{1}{2}\left(\frac{\partial u_2}{\partial x_j}+\frac{\partial u_j}{\partial x_2}\right)\delta x_j \\ \\
&=
\frac{1}{2}\left(\frac{\partial u_2}{\partial x_1}+\frac{\partial u_1}{\partial x_2}\right)\delta x_1+\frac{1}{2}\left(\frac{\partial u_2}{\partial x_2}+\frac{\partial u_2}{\partial x_2}\right)\delta x_2+\frac{1}{2}\left(\frac{\partial u_2}{\partial x_3}+\frac{\partial u_3}{\partial x_2}\right)\delta x_3&&...\text{p.15下の縮約の規約より} \\ \\
&=
\frac{1}{2}\left(e_{21}+e_{12}\right)\delta x_1+\frac{1}{2}\left(e_{22}+e_{22}\right)\delta x_2+\frac{1}{2}\left(e_{23}+e_{32}\right)\delta x_3&\\ \\
&=
\frac{1}{2}\left(e_{12}+e_{21}\right)\delta x_1&&...e_{12}=e_{21}\text{以外で値を持たないため}\\ \\
&=
e_{12}\delta x_1&&...e_{21}=e_{12}\\ \\
\end{align*}
と
\begin{align*}
\delta u_3
&=
\frac{1}{2}\left(\frac{\partial u_3}{\partial x_j}+\frac{\partial u_j}{\partial x_3}\right)\delta x_j \\ \\
&=
\frac{1}{2}\left(\frac{\partial u_3}{\partial x_1}+\frac{\partial u_1}{\partial x_3}\right)\delta x_1+\frac{1}{2}\left(\frac{\partial u_3}{\partial x_2}+\frac{\partial u_2}{\partial x_3}\right)\delta x_2+\frac{1}{2}\left(\frac{\partial u_3}{\partial x_3}+\frac{\partial u_3}{\partial x_3}\right)\delta x_3&&...\text{p.15下の縮約の規約より} \\ \\
&=
\frac{1}{2}\left(e_{31}+e_{13}\right)\delta x_1+\frac{1}{2}\left(e_{32}+e_{23}\right)\delta x_2+\frac{1}{2}\left(e_{33}+e_{33}\right)\delta x_3&\\ \\
&=
0&&...e_{12}=e_{21}\text{以外で値を持たないため}\\ \\
\end{align*}
も導出できる。
式(2・32)の右辺に\(\epsilon_{jil}\)をかけると
\begin{align*}
\epsilon_{jik}\epsilon_{jil}w_k
&=
(\delta_{ii}\delta_{kl}-\delta_{il}\delta_{ki})w_k&&...\text{p.25中段より} \\ \\
&=
\left((\delta_{11}+\delta_{22}+\delta_{33})\delta_{kl}-(\delta_{1l}\delta_{k1}+\delta_{2l}\delta_{k2}+\delta_{3l}\delta_{k3})\right)w_k&&...\text{p.15下の縮約のルールより} \\ \\
&=
\left(3\delta_{kl}-(\delta_{1l}\delta_{k1}+\delta_{2l}\delta_{k2}+\delta_{3l}\delta_{k3})\right)w_k&&...\text{クロネッカーのデルタより} \\ \\
&=
\left(3\delta_{1l}-(\delta_{1l}\delta_{11}+\delta_{2l}\delta_{12}+\delta_{3l}\delta_{13})\right)w_1+\left(3\delta_{2l}-(\delta_{1l}\delta_{21}+\delta_{2l}\delta_{22}+\delta_{3l}\delta_{23})\right)w_2+\left(3\delta_{3l}-(\delta_{1l}\delta_{31}+\delta_{2l}\delta_{32}+\delta_{3l}\delta_{33})\right)w_3&&...\text{p.15下の縮約のルールより} \\ \\
&=
\left(3\delta_{1l}-\delta_{1l}\right)w_1+\left(3\delta_{2l}-\delta_{2l}\right)w_2+\left(3\delta_{3l}-\delta_{3l}\right)w_3&&...\text{クロネッカーのデルタより} \\ \\
&=
2\delta_{1l}w_1+2\delta_{2l}w_2+2\delta_{3l}w_3 \\ \\
\end{align*}
が得られる。左辺も同様にすると
\begin{align*}
\left(\frac{\partial u_i}{\partial x_j}-\frac{\partial u_j}{\partial x_i}\right)\epsilon_{jil}
&=
\left(\frac{\partial u_1}{\partial x_j}-\frac{\partial u_j}{\partial x_1}\right)\epsilon_{j1l}+\left(\frac{\partial u_2}{\partial x_j}-\frac{\partial u_j}{\partial x_2}\right)\epsilon_{j2l}+\left(\frac{\partial u_3}{\partial x_j}-\frac{\partial u_j}{\partial x_3}\right)\epsilon_{j3l} \\ \\
&=
\left(\frac{\partial u_1}{\partial x_1}-\frac{\partial u_1}{\partial x_1}\right)\epsilon_{11l}+\left(\frac{\partial u_2}{\partial x_1}-\frac{\partial u_1}{\partial x_2}\right)\epsilon_{12l}+\left(\frac{\partial u_3}{\partial x_1}-\frac{\partial u_1}{\partial x_3}\right)\epsilon_{13l} \\
&+
\left(\frac{\partial u_1}{\partial x_2}-\frac{\partial u_2}{\partial x_1}\right)\epsilon_{21l}+\left(\frac{\partial u_2}{\partial x_2}-\frac{\partial u_2}{\partial x_2}\right)\epsilon_{22l}+\left(\frac{\partial u_3}{\partial x_2}-\frac{\partial u_2}{\partial x_3}\right)\epsilon_{23l} \\
&+
\left(\frac{\partial u_1}{\partial x_3}-\frac{\partial u_3}{\partial x_1}\right)\epsilon_{31l}+\left(\frac{\partial u_2}{\partial x_3}-\frac{\partial u_3}{\partial x_2}\right)\epsilon_{32l}+\left(\frac{\partial u_3}{\partial x_3}-\frac{\partial u_3}{\partial x_3}\right)\epsilon_{33l} \\ \\
&=
0+\left(\frac{\partial u_2}{\partial x_1}-\frac{\partial u_1}{\partial x_2}\right)\epsilon_{12l}+\left(\frac{\partial u_3}{\partial x_1}-\frac{\partial u_1}{\partial x_3}\right)\epsilon_{13l} \\
&+
\left(\frac{\partial u_1}{\partial x_2}-\frac{\partial u_2}{\partial x_1}\right)\epsilon_{21l}+0+\left(\frac{\partial u_3}{\partial x_2}-\frac{\partial u_2}{\partial x_3}\right)\epsilon_{23l} \\
&+
\left(\frac{\partial u_1}{\partial x_3}-\frac{\partial u_3}{\partial x_1}\right)\epsilon_{31l}+\left(\frac{\partial u_2}{\partial x_3}-\frac{\partial u_3}{\partial x_2}\right)\epsilon_{32l}+0 \\ \\
&=
\left(\frac{\partial u_3}{\partial x_2}-\frac{\partial u_2}{\partial x_3}\right)\epsilon_{23l}+ \left(\frac{\partial u_2}{\partial x_3}-\frac{\partial u_3}{\partial x_2}\right)\epsilon_{32l}\\
&+
\left(\frac{\partial u_1}{\partial x_3}-\frac{\partial u_3}{\partial x_1}\right)\epsilon_{31l}+\left(\frac{\partial u_3}{\partial x_1}-\frac{\partial u_1}{\partial x_3}\right)\epsilon_{13l} \\
&+
\left(\frac{\partial u_2}{\partial x_1}-\frac{\partial u_1}{\partial x_2}\right)\epsilon_{12l}+\left(\frac{\partial u_1}{\partial x_2}-\frac{\partial u_2}{\partial x_1}\right)\epsilon_{21l} \\ \\
\end{align*}
が得られる。Eddingtonの記号の性質を用いて、\(l=1,2,3\)のそれぞれの時に\(0\)にならずに残る項を比較すると
\begin{align*}
&\left\{
\begin{array}{l}
2\omega_1\delta_{11}&=\left(\frac{\partial u_3}{\partial x_2}-\frac{\partial u_2}{\partial x_3}\right)\epsilon_{231}+ \left(\frac{\partial u_2}{\partial x_3}-\frac{\partial u_3}{\partial x_2}\right)\epsilon_{321} \\ \\
2\omega_2\delta_{22}&=\left(\frac{\partial u_1}{\partial x_3}-\frac{\partial u_3}{\partial x_1}\right)\epsilon_{312}+\left(\frac{\partial u_3}{\partial x_1}-\frac{\partial u_1}{\partial x_3}\right)\epsilon_{132} \\ \\
2\omega_3\delta_{33}&=\left(\frac{\partial u_2}{\partial x_1}-\frac{\partial u_1}{\partial x_2}\right)\epsilon_{123}+\left(\frac{\partial u_1}{\partial x_2}-\frac{\partial u_2}{\partial x_1}\right)\epsilon_{213} \\ \\
\end{array}
\right. \\ \\
&\Leftrightarrow
\left\{
\begin{array}{l}
2\omega_1&=\left(\frac{\partial u_3}{\partial x_2}-\frac{\partial u_2}{\partial x_3}\right)-\left(\frac{\partial u_2}{\partial x_3}-\frac{\partial u_3}{\partial x_2}\right) \\ \\
2\omega_2&=\left(\frac{\partial u_1}{\partial x_3}-\frac{\partial u_3}{\partial x_1}\right)-\left(\frac{\partial u_3}{\partial x_1}-\frac{\partial u_1}{\partial x_3}\right) \\ \\
2\omega_3&=\left(\frac{\partial u_2}{\partial x_1}-\frac{\partial u_1}{\partial x_2}\right)-\left(\frac{\partial u_1}{\partial x_2}-\frac{\partial u_2}{\partial x_1}\right) \\ \\
\end{array}
\right. \\ \\
&\Leftrightarrow
\left\{
\begin{array}{l}
\omega_1&=\left(\frac{\partial u_3}{\partial x_2}-\frac{\partial u_2}{\partial x_3}\right)&=\epsilon_{ji1}\frac{\partial u_i}{\partial x_j} \\ \\
\omega_2&=\left(\frac{\partial u_1}{\partial x_3}-\frac{\partial u_3}{\partial x_1}\right)&=\epsilon_{ji2}\frac{\partial u_i}{\partial x_j} \\ \\
\omega_3&=\left(\frac{\partial u_2}{\partial x_1}-\frac{\partial u_1}{\partial x_2}\right)&=\epsilon_{ji3}\frac{\partial u_i}{\partial x_j} \\ \\
\end{array}
\right. \\ \\
\end{align*}
が得られる。
式(2・24)の中で反対称の部分を抜き出して計算する。
\begin{align*}
\delta u_1
&=
\frac{1}{2}\left(\frac{\partial u_1}{\partial x_j}-\frac{\partial u_j}{\partial x_1}\right)\delta x_j \\ \\
&=
\frac{1}{2}\left(\frac{\partial u_1}{\partial x_1}-\frac{\partial u_1}{\partial x_1}\right)\delta x_1+\frac{1}{2}\left(\frac{\partial u_1}{\partial x_2}-\frac{\partial u_2}{\partial x_1}\right)\delta x_2+\frac{1}{2}\left(\frac{\partial u_1}{\partial x_3}-\frac{\partial u_3}{\partial x_1}\right)\delta x_3&&...\text{p.15下の縮約の規約より} \\ \\
&=
0-\frac{1}{2}\omega_3\delta x_2+\frac{1}{2}\omega_2\delta x_3&\\ \\
&=
-\frac{1}{2}\omega_3\delta x_2&&...\omega_3\text{以外で値を持たないため}\\ \\
\end{align*}
と導出できる。また、
\begin{align*}
\delta u_2
&=
\frac{1}{2}\left(\frac{\partial u_2}{\partial x_j}-\frac{\partial u_j}{\partial x_2}\right)\delta x_j \\ \\
&=
\frac{1}{2}\left(\frac{\partial u_2}{\partial x_1}-\frac{\partial u_1}{\partial x_2}\right)\delta x_1+\frac{1}{2}\left(\frac{\partial u_2}{\partial x_2}-\frac{\partial u_2}{\partial x_2}\right)\delta x_2+\frac{1}{2}\left(\frac{\partial u_2}{\partial x_3}-\frac{\partial u_3}{\partial x_2}\right)\delta x_3&&...\text{p.15下の縮約の規約より} \\ \\
&=
\frac{1}{2}\omega_3\delta x_1+0-\frac{1}{2}\omega_1\delta x_3&\\ \\
&=
\frac{1}{2}\omega_3\delta x_1&&...\omega_3\text{以外で値を持たないため}\\ \\
\end{align*}
と
\begin{align*}
\delta u_3
&=
\frac{1}{2}\left(\frac{\partial u_3}{\partial x_j}-\frac{\partial u_j}{\partial x_3}\right)\delta x_j \\ \\
&=
\frac{1}{2}\left(\frac{\partial u_3}{\partial x_1}-\frac{\partial u_1}{\partial x_3}\right)\delta x_1+\frac{1}{2}\left(\frac{\partial u_3}{\partial x_2}-\frac{\partial u_2}{\partial x_3}\right)\delta x_2+\frac{1}{2}\left(\frac{\partial u_3}{\partial x_3}-\frac{\partial u_3}{\partial x_3}\right)\delta x_3&&...\text{p.15下の縮約の規約より} \\ \\
&=
\frac{1}{2}\omega_2\delta x_1+\frac{1}{2}\omega_1\delta x_2+0&\\ \\
&=
0&&...\omega_3\text{以外で値を持たないため}\\ \\
\end{align*}
も導出できる。
式(2・13)の導出と同様。
\begin{align*}
\boldsymbol{p}(\boldsymbol{n})\delta S+\boldsymbol{p}(-\boldsymbol{e}_j)\delta S_j
&=
\boldsymbol{p}(\boldsymbol{n})\delta S+\boldsymbol{p}(-\boldsymbol{e}_1)\delta S_1+\boldsymbol{p}(-\boldsymbol{e}_2)\delta S_2+\boldsymbol{p}(-\boldsymbol{e}_3)\delta S_3&&...\text{p.15下の縮約の記法より} \\ \\
&=
\boldsymbol{p}(\boldsymbol{n})\delta S+\boldsymbol{p}(-\boldsymbol{e}_1)\{(\boldsymbol{n}\cdot\boldsymbol{e}_1)\delta S\}+\boldsymbol{p}(-\boldsymbol{e}_2)\{(\boldsymbol{n}\cdot\boldsymbol{e}_2)\delta S\}+\boldsymbol{p}(-\boldsymbol{e}_3)\{(\boldsymbol{n}\cdot\boldsymbol{e}_3)\delta S\}&&...(1) \\ \\
&=
\{\boldsymbol{p}(\boldsymbol{n})\delta S+\boldsymbol{p}(-\boldsymbol{e}_1)(\boldsymbol{n}\cdot\boldsymbol{e}_1)+\boldsymbol{p}(-\boldsymbol{e}_2)(\boldsymbol{n}\cdot\boldsymbol{e}_2)+\boldsymbol{p}(-\boldsymbol{e}_3)(\boldsymbol{n}\cdot\boldsymbol{e}_3)\}\delta S&\\ \\
&=
\{\boldsymbol{p}(\boldsymbol{n})\delta S+\boldsymbol{p}(-\boldsymbol{e}_j)(\boldsymbol{n}\cdot\boldsymbol{e}_j)\}\delta S&&...\text{p.15下の縮約の記法より} \\ \\\\ \\
\end{align*}
と導出できる。
(1)では、\(\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\)がそれぞれ垂直であることから、\(\boldsymbol{n}\)から\(\boldsymbol{e}_j\)への射影が\(\delta S_j\)と\(\delta S\)の比になること\((\boldsymbol{e}_j\cdot \boldsymbol{n}=\delta S_i/\delta S)\)を用いた。
(1)では、\(\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\)がそれぞれ垂直であることから、\(\boldsymbol{n}\)から\(\boldsymbol{e}_j\)への射影が\(\delta S_j\)と\(\delta S\)の比になること\((\boldsymbol{e}_j\cdot \boldsymbol{n}=\delta S_i/\delta S)\)を用いた。